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Slender-body theory for steady
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A simple model based on slender-body theory is developed to describe the deflection
of a steady plume by shear flow in very viscous fluid of the same viscosity. The key
dimensionless parameters measuring the relative strengths of the shear, diffusion and
source flux are identified, which allows a number of different dynamical regimes to
be distinguished. The predictions of the model show good agreement with many,
but not all, observations from previous experimental studies. Possible reasons for the
discrepancies are discussed.

1. Introduction
Plumes arise from a localized and maintained source of buoyancy, possibly

combined with a source of mass. They comprise a slender column of buoyant fluid
rising (or falling) continuously under the influence of gravity (Turner 1973). Plumes
are distinguished from episodic thermals, and from general convective overturning in
equant convection cells, by being isolated and slender features. Any other motion in
the surrounding fluid, which could be due to moving boundaries or to other scales
of convection, affects the trajectory of a plume, causing it to be deflected or sheared
from its natural vertical path.

Sheared plumes in very viscous fluid have a particular relevance to mantle
convection. Persistent plumes originating within the mantle are thought to underlie
hotspot tracks such as the Hawaiian–Emperor sea-mount chain. Wilson (1965) and
Morgan (1971, 1972) comment on the variation in age of the volcanic rocks along
the length of the tracks, which correlates roughly with the history of movement
of the plates over the plumes. Detailed analysis shows that the relative motions of
the inferred sources of such chains are typically much smaller than the observed
plate motions (Molnar & Atwater 1973; Molnar & Stock 1987; Steinberger &
O’Connell 1998), which suggests that the sources are much deeper in the mantle than
the regions moving with the plates. Plumes are thus usually thought to originate
from the thermal boundary layer above the core–mantle boundary, at a depth of
about 3000 km. Jellinek & Manga (2002) and Davaille, Girard & Le Bars (2002),
have recently suggested that the plume sources might then be anchored at nearly
fixed positions on the core–mantle boundary by coupling of the thermal boundary
layer with a thin compositionally dense layer (D′′) at the base of the mantle.
Whether this anchoring mechanism proves correct or not, the narrow plumes rising
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through the mantle must penetrate and, to some extent, be deflected by the larger-
scale convective overturning flow that is associated with sea-floor spreading and
subduction.

Many authors have developed models for vertical rise in a mantle plume that is
not significantly deflected by flow. These include early models of transport along a
thermally induced low-viscosity conduit by Yuen & Schubert (1976) and Loper &
Stacey (1983), which might be fed by steady drainage of a thermal boundary layer
above the core–mantle boundary (Stacey & Loper 1983). These ideas were developed
in calculations by Olson, Schubert & Anderson (1993) and Albers & Christensen
(1996), among others, to model variations of the centreline temperature excess with
height and buoyancy flux, for comparison with plume parameters observed at the
top of the mantle. More recently, Steinberger (e.g. Steinberger & O’Connell 1998;
Steinberger 2000) has made extensive efforts to relate detailed geophysical data from
roughly 50 observed plumes to plume models and the effects of mantle motion.
An excellent recent review of all this work from a geophysical perspective is given
by Jellinek & Manga (2004); a review of fluid-mechanical models is provided by
Whitehead (1988).

Plumes that rise through convection rolls in a quasi-steady manner will undoubtedly
be deflected by the motion of the surrounding fluid. Sheared plumes have been
studied experimentally, both with and without significant diffusion of the buoyancy
(Skilbeck & Whitehead 1978; Whitehead 1982; Richards & Griffiths 1988, 1989). In
these experiments, hot or compositionally buoyant fluid was introduced at the base
of a cylindrical tank, with a rotating lid to generate a shear flow. Simple models were
put forward to explain the observed behaviour and plume deflection. More recently,
extensive diffusive experiments have been reported by Kerr & Mériaux (2004), who
used a similar tank to generate a shear flow, but generated their plumes via a heating
element set into the base.

The effects of shearing may also cause strongly tilted plumes to become unstable
and break up into discrete blobs or diapirs. Experiments and theory on such breakup
have been reported by Skilbeck & Whitehead (1978) and Whitehead (1982), who
found plumes to become unstable when the angle θ to the vertical exceeds about
55◦–60◦. The authors discuss this instability as a possible mechanism for the chains
of discrete islands in hotspot tracks. Related breakup experiments have also been
performed by Olson & Singer (1985) though with a moving source in a stationary
fluid, rather than a stationary source in a sheared fluid. The instability of a buoyant
horizontal cylinder (i.e. the limit of θ → 90◦) has been analysed theoretically by
Lister & Kerr (1989), and linked to spatially episodic volcanism (Kerr & Lister
1988). However, as shown by experiments, a steady plume can be established without
instability, provided the shear is sufficiently weak and the plume not deflected too far
from the vertical.

Previous models of sheared plumes are somewhat unsatisfactory from a theoretical
point of view, since they include free parameters that can be chosen to fit the
data. Skilbeck & Whitehead (1978) applied slender-body theory to the plume, but
assigned a constant value of a/� = 0.1 for the aspect ratio, rather than considering
the correct external length scale to use. Richards & Griffiths (1988) proposed that the
plume trajectory can be determined by adding a uniform vertical rise velocity to the
horizontal advection by the background shear; this rise velocity is assumed to scale
like the Stokes rise velocity of an isolated buoyant sphere of the same radius and
buoyancy as the plume, but with an empirically determined multiplicative coefficient
k to account for the different (roughly cylindrical) geometry. This model predicts
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Figure 1. Definition sketch showing the coordinates and variables used to describe
a sheared plume.

parabolic trajectories for the case of uniform shear and, after fitting the parameter k,
yields remarkably good agreement with experiments.

In this paper we develop a model for steady sheared plumes that has no free
parameters and has a more rigorous theoretical grounding than those proposed
before. It should be noted that a simplifying assumption of our model is that the
plume and ambient fluids have similar viscosities, which is often not the case in
experiments or the mantle. Nevertheless, comparison with experiments suggests that
the plume trajectory is insensitive to its viscosity and can be predicted as if it were the
same as the ambient viscosity. The problem is formalized in § 2, and a model based on
slender-body theory is developed in § 3, during which key dimensionless parameters
are identified. The various possible dynamical regimes given by these parameters are
discussed in § 4. We compare the model’s predictions with the results of previous
experiments in § 5, and provide some concluding remarks in § 6.

2. Problem description and governing equations
We consider a buoyant plume rising steadily through a uniform fluid of kinematic

viscosity ν which is subject to an externally imposed uniform horizontal shear flow
γ zêx (see figure 1). The external flow does not have to be a uniform shear and,
as shown in § 5.3, the model can be used with other specified flows. However,
uniform shear is convenient to realize experimentally, and is used in the theoretical
development for definiteness and simplicity.

The additional velocity induced by the buoyancy in the plume is denoted by u,
the corresponding pressure perturbation by p, and the acceleration due to gravity by
−gêz. We assume that there is a rigid horizontal lower boundary at z = 0, that the
fluid is unbounded horizontally, and that it is either unbounded vertically or capped
by a second horizontal boundary at z = H (translating with velocity γH êx).

For the case of thermal buoyancy, we introduce the thermal diffusivity κ and
background temperature T0. We assume that the equation of state can be linearized
about T0 over the range of temperatures under consideration and define the buoyancy
field b = gβ(T − T0), where β = − ∂ ln ρ/∂T |T0

is the coefficient of thermal expansion.
(For applications to the mantle, it would be necessary to use the potential temperature
instead of temperature in order to account for adiabatic expansion.) We assume, for
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simplicity, that inertia and any temperature dependence of the viscosity are both
negligible. Applying the Boussinesq approximation, the governing equations are

ν∇2u =
1

ρ0

∇p − bêz, (2.1)

∇ · u = 0, (2.2)

(u + γ zêx) · ∇b = κ∇2b. (2.3)

The boundary conditions are that u, p and b decay in the far field, and that u = 0
on the rigid boundaries. There are also some boundary conditions that describe the
source at the base of the plume (see, for example, Whittaker & Lister 2006a,b). Since
the model we develop here concerns only cross-sectionally averaged quantities, we
require knowledge only of the initial mass flux Q0 and buoyancy flux B emitted by
the source. It can be shown from (2.2) and (2.3) that B is conserved along the length
of a steady plume.

Equations (2.1)–(2.3) and their boundary conditions also apply to the case of
compositional buoyancy provided κ is replaced by the appropriate compositional
diffusivity, possibly negligible, and b is defined using the compositional difference
C − C0 between the plume and its environment and the compositional effect on
density −∂ ln ρ/∂C |C0

.
As shown in figure 1, we define an axial coordinate s to measure the distance

along the plume from its base, and local polar coordinates (r, φ) to describe the plane
locally perpendicular to the plume axis (with φ = 0 corresponding to the positive x

direction). The axial and transverse components of u in the (x, z)-plane are labelled
w and u respectively; the third velocity component (in the êy-direction) is labelled v,
but is less important here.

3. Theoretical model
We aim to develop a simple leading-order model for the behaviour of a slender

plume, that does not involve the detailed buoyancy distribution or velocity profile
inside the plume. We describe the plume at each point s along its axis by the
inclination θ(s) from the vertical, the buoyancy per unit length

F (s) =

∫∫
b r dr dφ, (3.1)

and a characteristic width a(s), defined by

a2 =
1

F

∫∫
b r3 dr dφ. (3.2)

We also define buoyancy-weighted average velocities

w(s) =
1

F

∫∫
wb r dr dφ, (3.3)

u(s) =
1

F

∫∫
ub r dr dφ. (3.4)

The corresponding mean velocity v̄ perpendicular to the plane of the shear is zero by
symmetry and does not appear in the model.

The model consists of equations that relate θ , F , a, u and w, and determines how
they evolve along the length of the plume.
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3.1. Buoyancy fluxes and angle of inclination

The diffusion of buoyancy in the axial direction is negligible compared to advection
because the plume is assumed to be slender. The diffusion of buoyancy in the
transverse direction may be significant, but has zero cross-sectional average. It follows
that the total buoyancy flux B per unit length of the plume is dominated by the
advective contribution. Hence

B =

∫∫
(u + γ zêx) b r dr dφ = (u + γ zêx) F. (3.5)

In a steady state, the magnitude of the buoyancy flux is B (the flux emitted by the
source), and its direction defines the angle of inclination θ at each point along the
plume. Taking the axial and transverse components of (3.5), see figure 1, we obtain

F =
B

w + γ z sin θ
, (3.6)

u = γ z cos θ. (3.7)

The axial component (3.6) relates the local buoyancy per unit length of plume to
the conserved axial buoyancy flux B and the total axial velocity w + γ z sin θ . The
transverse component (3.7) states that, since the buoyancy flux B is entirely axial in
a steady state, the mean transverse velocity u − γ z cos θ must be zero.

3.2. Slender-body theory

The velocity field induced by the buoyancy in the plume can be described by slender-
body theory (see Cox 1970; Batchelor 1970; Keller & Rubinow 1976; Hinch 1991,
§ 5.4). The basis of this theory is to use asymptotic methods to calculate an outer
flow, which has a length scale � much greater than the radius a of the slender body,
and to match it to an inner flow that has a length scale comparable to a. At leading
order, the outer flow sees the plume as a curved line of zero thickness, which exerts
a line force of axially varying strength F (s). The inner flow sees the plume as a long
straight cylinder of finite radius, within which there is a distributed body force b(r, φ)
with negligible axial variation. The matching between the outer and inner flows is
performed in the intermediate region a � r � �. Using standard results, we find that
the outer flow driven by the plume is given in this region by

w ∼ F cos θ

2πν

{
− ln

(r

�

)
+ C1

}
, (3.8)

u ∼ F sin θ

4πν

{
− ln

(r

�

)
+

(
cos2 φ − 1

2

)
+ C2

}
, (3.9)

where F cos θ and F sin θ are the local axial and transverse components of the
buoyancy force per unit length. For r � �, the velocity is dominated by the logarithmic
terms, which correspond to the logarithmic singularity of a line force in Stokes flow.
(The term cos2 φ − 1

2
is also part of the solution for a transverse line force, but is

smaller than the logarithmic part.)
As discussed in Appendix A, the length scale � of the external flow in (3.9) and

(3.8) can be taken to be

� =

{
z : no upper boundary

z
(

1 − z

H

)
: upper boundary at z = H,

(3.10)

corresponding roughly to the distance to the nearest boundary.
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The terms Ci in (3.8) and (3.9) are O(1) corrections to the leading-order
approximation of the flow as that due to a straight uniform line force. In detail,
they depend on the positions of the external boundaries, the complete curved shape
of the plume, and the variation of F (s) along the plume, but they are independent of
the internal buoyancy distribution within the plume (which appears only at O(a2/r2)).
In order to keep the model local, we approximate the Ci by the expressions

C1 = ln 2 − 1 + 1
2

sin2 θ, (3.11)

C2 = ln 2 − 2 + sin2 θ, (3.12)

which depend only on the local value of θ . As discussed in Appendix A, these
approximations account for the local tilt θ of the plume and for the presence of the
lower boundary, but not for the variations in θ and F along the length of the plume.
Since these variations appear to be relatively slow in the solutions of § 5, and since
the Ci are themselves only small corrections to the leading-order terms, we assume
that the approximations (3.11) and (3.12) are satisfactory.

Since the interior flow must match to the inner limit of the outer flow, it must be
almost the same as (3.8) and (3.9) evaluated at r = a. The mean velocities (3.3) and
(3.4) are therefore written as

w =
F cos θ

2πν

{
ln

(
�

a

)
+ C1 + c1

}
, (3.13)

u =
F sin θ

4πν

{
ln

(
�

a

)
+ C2 + c2

}
, (3.14)

where the ci represent the deviation of the mean from the outer solution at r = a;
they depend only on the local buoyancy distribution within the plume. The angular
dependence on φ in (3.9) disappears in the averaging of (3.4).

In Appendix B we calculate the values of c1 and c2 for three representative buoyancy
distributions. The values are found to be numerically small, and are not particularly
sensitive to the actual distribution. For a top-hat profile we obtain c1 = c2 = − 0.097
and for a Gaussian profile c1 = c2 = −0.058. Since c1 and c2 are much smaller than the
leading-order logarithmic terms for a/� � 1 (and also smaller than the corrections C1

and C2), we shall use the fixed values c1 = c2 = −0.1. This avoids the need to calculate
the buoyancy distribution within the plume.

3.3. Diffusive growth

Finally, we consider how the plume width a varies due to the axial variation of
velocity and the outward diffusion of buoyancy. In Whittaker & Lister (2006b), we
defined the mass flux of a straight axisymmetric plume to be

Q(s) =

2

∫
bψ dψ∫
b dψ

, (3.15)

where ψ is the streamfunction, and derived the exact result

Q(s) = Q0 + 4κs, (3.16)

where Q0 is the initial mass flux at the base of the plume. Thus, while the buoyancy
flux B is conserved, the mass flux Q increases linearly along the plume owing to
diffusion of buoyancy into the surrounding fluid. For a uniform axial flow w0(s),
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ψ = 1
2
w0r

2 and it follows from (3.15) and (3.2) that Q = a2w0, which establishes a
relationship between the mass flux and the plume width. For a slender sheared plume,
the flow is still approximately uniform on the scale of the plume width, and we can
replace w0 by the mean axial flow w + γ z sin θ . We assume that the increase in the
mass flux can then be approximated by (3.16), though a sheared plume is neither
axisymmetric nor straight. We thus obtain

a2 =
4κs + Q0

w + γ z sin θ
(3.17)

as a simple model of how stretching decreases and diffusion increases the plume
radius.

This model neglects the possibility that Q may increase owing to entrainment by
the cross-stream circulation, as argued by Griffiths & Campbell (1991). This effect
could be modelled by replacing (3.16) by dQ/ds = c(κaU )1/2, for some dimensionless
constant c and suitable velocity U , and replacing the numerator of (3.17) by Q(s). The
appropriate definition of U is not obvious, but it may scale like u/ ln(�/a) since the
circulation term in (3.9) is weaker than the logarithmic translational term. We note
from (3.7) that u is itself small near the base of a plume or if the plume is weakly tilted.
Moreover, we are principally concerned with the plume trajectory (rather than the
precise evolution of a), and the trajectory depends only weakly on a logarithm of a.
Hence, for simplicity, we will use (3.17) in our model.

3.4. Non-dimensionalization

From (3.6), (3.13) and (3.14), we scale velocities with (B/2πν)1/2 and the buoyancy
F with (2πνB)1/2. In order to obtain this velocity scale, the length and time scales L

and T must be chosen such that

L

T
=

(
B

2πν

)1/2

. (3.18)

As discussed below, there are a number of sensible choices for the length scale L

(and hence of T ), the most convenient of which depends on the situation under
consideration.

Rewriting (3.6), (3.7), (3.13), (3.14) and (3.17) in non-dimensional form, we obtain

w = F cos θ

{
ln

(
�

a

)
+ C1 + c1

}
, (3.19)

u =
F sin θ

2

{
ln

(
�

a

)
+ C2 + c1

}
, (3.20)

cos θ =
u

G z
, (3.21)

F =
1

w + G z sin θ
, (3.22)

a2 =
K s + Q

w + G z sin θ
, (3.23)

where

G = γ T , K =
4κT

L2
, Q =

Q0T

L3
, (3.24)
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Length scale Time scale Shear rate Diffusion Mass flux

L T G = γ T K =
4κT

L2
Q =

Q0T

L3

H H

(
2πν

B

)1/2

γH

(
2πν

B

)1/2
4κ

H

(
2πν

B

)1/2
Q0

H 2

(
2πν

B

)1/2

(
B

2πνγ 2

)1/2

γ −1 1
8πνκγ

B
Q0γ

2

(
2πν

B

)3/2

4κ

(
2πν

B

)1/2
8πνκ

B

8πνκγ

B
1

Q0

16κ2

(
B

2πν

)1/4

Q
1/2
0

(
2πν

B

)1/4

Q
1/2
0

(
2πν

B

)3/4
4κ

Q
1/2
0

(
2πν

B

)1/4

Q
1/2
0 γ

(
2πν

B

)3/4

1

Table 1. Examples of various choices of length scale L, along with the corresponding time
scale T and the resultant dimensionless parameters G , K and Q.

�, C1 and C2 are given by (3.10)–(3.12), and c1 = c2 = − 0.1. These equations form the
plume model.

The dimensionless parameters G , K and Q can be viewed as non-dimensional
forms of the shear rate, thermal diffusivity, and initial mass flux respectively. Their
values depend on the fluid and source properties, the applied shear rate, and the
chosen length and time scales.

The choice of L can be adapted to the situation under consideration. When an
upper boundary is present at z = H and the plume behaviour over the full range of z

is of interest, then it is probably most sensible to set L = H so that the dimensionless
height of the ambient flow becomes unity. If the upper boundary is remote then,
depending on what behaviour is of interest and which experimental parameters are
being changed, it may be more convenient to choose the length scale L so that one of
G , K or Q is unity. For example, choosing L so that G = 1 has the effect that shear
becomes important over an O(1) dimensionless height (see § 4). Various scalings and
the resulting values of the three dimensionless parameters are shown in table 1.

4. Transition heights and parameter regimes
There are several places in (3.19)–(3.23) where two terms are added together, raising

the possibility that one term or other will dominate in some region of the plume.
The change-overs between such regions of dominance lead to three (non-dimensional)
transition heights:

(i) The height ha at which the plume starts to become slender, given by �/a = O(1).
This is where the logarithmic terms in (3.19) and (3.20) start to dominate the constant
terms.

(ii) The height hd at which outward diffusion starts to have a significant effect
on the width of the plume, given by K s ∼ Q. This is where the two terms in the
numerator of (3.23) balance.

(iii) The height hs at which the background shear velocity becomes comparable
to the rise velocity of plume, given by w ∼ G z. This is where the terms in the
denominators of (3.22) and (3.23) become comparable.

We only consider the case ha � hs in which the plume becomes slender before it
suffers significant shearing. We make this restriction so that slender-body theory, and
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Figure 2. A regime diagram for sheared plumes, based on the three dimensionless parameters
G , K and Q, as defined in (3.24). The upper-right region corresponds buoyant regions that
would suffer significant shearing before they become slender plumes, which we do not consider
here. The three labelled regimes correspond to different orderings of the transition heights
(4.1)–(4.3).

hence the model, is applicable in the region in which the plume is being sheared.
(In the opposite case, shear advects the buoyant fluid away from the source before it
is able to rise and form a slender plume.)

We now use scaling arguments to examine how the transition heights are related
to the dimensionless parameters G , K and Q. We first consider the case where the
fluid domain is sufficiently high that � = z is a good approximation at each of the
transition heights. We note that for z � hs , the angle of inclination is not yet close to
horizontal, so that cos θ = O(1), w � G z sin θ and s ∼ z.

The plume becomes slender when z ∼ ha � hs . By definition, �/a = O(1) there, and
by examining (3.19) and (3.22) we find that w ∼ F ∼ 1. Then (3.23) implies

ha ∼ max{Q1/2,K }. (4.1)

We can only evaluate the diffusion height hd when it satisfies hd � hs . In this case,
s ∼ z, and K s ∼ Q implies that

hd ∼ Q

K
. (4.2)

When hd 	 hs , the arclength s could be significantly larger than the height z, and we
are unable to relate the two without solving the model in detail.

Finally, for the shear height hs , we first estimate w ∼ (ln(�/a))1/2 using (3.19) and
(3.22). Then w ∼ G hs implies that

hs

[
ln

(
hs

a(hs)

)]−1/2

∼ 1

G
. (4.3)

The width a(hs) may be estimated from (3.23) using s ∼ hs and the estimate of w.
With the restriction ha � hs , there are three possible orderings of the transition

heights, which lead to three different dynamical regimes, as shown in figure 2:
Plumes in Regime I (ha � hs � hd) suffer significant deflection before they start to

thicken diffusively. This obviously includes the non-diffusive case of immiscible fluids.
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Plumes in Regime II (ha � hd � hs) have the diffusive and shear heights reversed, so
now the plume thickens diffusively before it suffers a significant deflection. However,
since ha � hd , there is still a lower region where the plume is slender but behaves in
a non-diffusive manner (cf. z � z∗ in Whittaker & Lister 2006b). Such plumes must
originate from a distributed source.

Plumes in Regime III (hd � ha � hs) appear the same as those in regime II at
the O(hs) heights where shearing takes place. But lower down, there is no slender
non-diffusive behaviour; the plume is already behaving diffusively when it becomes
slender. Such plumes originate from a point source (cf. Whittaker & Lister 2006a).

Each point on the regime diagram (figure 2) corresponds to a single plume. However
the characteristics of the plume may change along its length, as z passes through
each of the transition heights. Thus the plume corresponding to a specific point in
parameter space may appear to have different characteristics depending on the height
scale over which it is viewed. For example, in Regime II a plume first rises nearly
vertically with constant mass flux, then starts to grow diffusively, and then becomes
bent over by the shear.

Consider now how the results above are affected by the presence of a rigid boundary
at z = H , when H is not significantly larger than all of the transition heights. Clearly,
we should ensure that ha � H so that the plume is slender over most of the domain,
and that hs � H so that there is some shearing to be observed. With the presence of
an upper boundary, the length scale � is smaller at each height than in unbounded
fluid (see (3.10)), and hence ha will be larger. There will also be a region adjacent
to the upper boundary where a/� � O(1) and the plume is not slender. Vertical
motion will be inhibited by the boundary, so the plume will be deflected more (hence
hs will be reduced) and will appear to widen more rapidly by outward diffusion
(hence hd will be reduced). Away from the upper boundary, the length scale � and
the induced velocities will have the same order of magnitude as they would in the
absence of the boundary. Therefore, the behaviour away from the upper boundary
will be qualitatively similar.

Numerical calculations for mantle plumes (e.g. Albers & Christensen 1996;
Steinberger & O’Connell 1998) suggest that they span Regimes I and II, since
both shear and diffusion can have significant effects over the 3000 km vertical scale
of the mantle. It should be noted that the buoyancy fluxes of observed plumes vary
by more than an order of magnitude, as may the horizontal shear rate at different
depths in the mantle.

5. Comparison with experiments
Relevant experimental results have been reported by Richards & Griffiths (1988)

and Kerr & Mériaux (2004). In both cases the authors generated a low-Reynolds-
number shear flow in a vertically orientated cylindrical tank by rotating a circular lid
in contact with the fluid. A buoyant plume was released from an off-centre position
on the base, and observed as it rose through the sheared fluid. From the reported
experimental parameters, we calculated the corresponding values of G , K and Q
using the fluid depth H as the length scale L.

We then applied the model developed above to solve for the trajectory of a sheared
plume using a simple numerical marching scheme that integrates up from the source.
We started a little way above z = 0, since the plume needs to be sufficiently slender for
(3.19) and (3.20) to give reasonable estimates of the velocity. In practice, zmin = 5ha ,
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No. G w∗ K Q/w∗ w∗ μi/μ0

A1 3.98 0 0.32 × 10−4 1.88 0.07
A2 0.996 0 1.28 × 10−4 1.69 0.07
A3 0.283 0 4.50 × 10−4 1.49 0.07
B1 1.73 0 1.60 × 10−4 1.65 0.25
B2 0.661 0 4.19 × 10−4 1.47 0.25
B3 0.290 0 9.54 × 10−4 1.35 0.25

Table 2. Values of the dimensionless parameters inferred from the experiments of Richards &
Griffiths (1988) based on the outer viscosity μ0. The factor w∗ is defined by (5.1) and is used
to infer B and Q0 from the plume diameter. The groups G w∗ and Q/w∗ are independent of
w∗ and are calculated directly from the reported parameters. The viscosity ratio μi/μ0 is of
the plume to the ambient fluid.

as defined by (4.1), was found to be a suitable starting point at which ln(�/a) was
large enough to ensure that w, u > 0.

Since the model is local, the only parameters required for a non-zero start are
the initial horizontal displacement and trajectory length. In the comparisons shown
here, we obtain the horizontal displacement by aligning the experimental plume and
the corresponding prediction at z = 5ha and we assume that s = z at z = 5ha . This
assumption is a good approximation provided the initial deflection is not too large,
which will certainly be the case if ha � hs . The initial value of s is only needed for the
mass flux factor K s + Q in (3.23) and thus only affects diffusing plumes for which
K �= 0. Even with diffusion, a small error in s only enters the rest of the model
through a weak logarithmic factor, and so is not likely to have a significant effect on
the trajectory.

5.1. Richards & Griffiths (1988)

Richards & Griffiths used glycerol as the ambient fluid, in a tank of radius R = 30 cm
with a fluid depth H = 9.5 or 10.5 cm. A compositionally buoyant plume (of a
glycerol and water mixture) was released through a hole in the bottom of the tank at
a distance Rp = 12 cm from the axis. Molecular diffusion was negligible over the time
scales involved. The rotation rate of the lid, and the properties of the injected fluid
were varied between different runs. The injected fluid was 4 or 15 times less viscous
than the ambient fluid.

Unfortunately Richards & Griffiths did not report the injection velocity or initial
mass flux, so we could not calculate Q0 and B directly. One constraint follows from
the reported values of the density difference �ρ = B/gQ0 between the plume and the
ambient fluid. A second constraint is provided by the observed diameter d of the
plume, which was used as follows. Let w∗, a dimensionless axial velocity, be defined
such that

Q0 = π

(
d

2

)2 (
B

2πν

)1/2

w∗. (5.1)

Both B and Q0 can then be expressed in terms of w∗ and known experimental
parameters. Finally, the velocity w∗ was chosen so that the model predicted a plume
of the observed diameter.

The dimensionless parameters corresponding to the experiments reported are shown
in table 2. The shear rate γ was calculated by assuming that the velocity varied linearly
in z between the stationary base and moving lid directly above the source. Since the
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Figure 3. Comparison of the model predictions (dashed lines) with the experimental
observations (solid lines) of Richards & Griffiths (1988). The predicted plume edges are at

±
√

2 a corresponding to the top-hat buoyancy profile of a non-diffusing plume. The horizontal
and vertical coordinates are non-dimensionalized by the height H of the domain. Arbitrary
horizontal off-sets have been introduced to separate the different experiments.

plumes are essentially non-diffusing, K = 0 and the experiments lie in Regime I of
figure 2. Non-dimensionalizing by the tank height H , we have ha = O(10−2), hd = ∞
and hs = O(1).

The results from the model are compared with the experiments in figure 3. The
agreement is fairly good, except at the two lower (dimensionless) shear rates (A3 and
B3), for which the plumes are not particularly slender.

5.2. Kerr & Mériaux (2004)

Kerr & Mériaux studied diffusing thermal plumes in both glycerol and glucose syrup.
Their tank had radius R = 30 cm and height H = 24 cm (except for one experiment
done with H = 12 cm). The plumes were generated by a heated disk at the lower
boundary, a distance Rp = 15 cm from the axis. They were visualized using a pair of
injected dye streams (assumed to act as passive tracers). The heating power, fluid
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No. G K /10−4 Q/10−4 μi/μ0

6 0.425 7.61 4.44 0.32
8 1.03 7.61 4.44 0.32

12 0.175 3.80 2.80 0.090
14 0.425 3.80 2.80 0.090
18 0.425 7.77 4.50 0.087
20 1.03 7.77 4.50 0.087

Table 3. Values of the dimensionless parameters inferred from the experiments of Kerr &
Mériaux (2004), based on the outer viscosity μ0. The ratio with the viscosity μi of the hottest
fluid in the plume is also shown.

properties and lid rotation rate were all varied to investigate their effects on the
plumes.

It is not obvious how to measure the initial mass flux Q0 in the experiments, and
understandably Kerr & Mériaux did not attempt to do so. Nevertheless, a value of
Q0 is required in our model. This was computed by using the quoted flux Rayleigh
number RaQ (defined in terms of the power consumption of the heating element) and
results from Whittaker & Lister (2006b) for the boundary layer above a heated disk.

Whittaker & Lister derived the following expressions for the mass flux Q0 and
Nusselt number Nu , in terms of a Rayleigh number Ra based on the radius as of the
source:

Q0 ∼ 0.956 κas Ra1/5, (5.2)

Nu ∼ 2.90 Ra1/5. (5.3)

The flux Rayleigh number defined by Kerr & Mériaux (2004) is related to these
quantities by πRaQ = Nu Ra . Eliminating Nu and Ra , we therefore obtain

Q0 = 0.969 κas (RaQ)1/6. (5.4)

It should be noted that the results of Whittaker & Lister (2006b) apply only to an
isoviscous fluid, whereas the experiments of Kerr & Mériaux have significant viscosity
variations (see table 3). However, a global change in viscosity would enter only though
the factor of Ra , and hence errors in Q0 are bounded by a factor of the viscosity ratio
to the 1/6th power in (5.4). Furthermore, Q0 only affects the plume trajectory via the
weak logarithmic dependence on a, so neglect of the viscosity variations should not
have a significant effect on the results present here.

Initially, we follow Kerr & Mériaux (2004) and assume that the shear rate
γ experienced by the plume was uniform in z. The dimensionless parameters
corresponding to six experiments are shown in table 3. The similar values of K
and Q suggest that hd is comparable to H . Since G = O(1) and the aspect ratios
of the plumes are not particularly large, hs is also comparable to H . Therefore the
experiments are roughly on the border hs ∼ hd between Regimes I and II of figure 2.

The results from the model are compared with the experiments in figure 4. There
is very poor agreement, except in the qualitative trends, and it would appear that
the shear velocity experienced by the experimental plumes is much less than that
estimated, as done above, by assuming uniform shear between the moving lid and
stationary source.
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Figure 4. A comparison of the model predictions (dashed) assuming a uniform shear velocity
with the experiments of Kerr & Mériaux (2004) (solid). The plume edges, though somewhat

arbitrary for a diffusing plume, are shown at ±
√

2 a for comparability with figure 3. The poor
agreement in deflection is because the shear in the experiments was not actually uniform.

5.3. Calculations with non-uniform shear

In the light of the results above, we re-examined the assumption that the motion of the
lid produces an approximately uniform shear flow, for both sets of experiments. The
Stokes flow in a cylindrical tank of radius R and height H , with a rigid lid rotating
at angular velocity ω, can be obtained using separation of variables in cylindrical
polar coordinates (ρ, φ, z). The velocity has only an azimuthal component V , which
is given by

V (ρ, z) = ωR

∞∑
n=1

αn J1(knρ/R)
sinh(knz/R)

sinh(knH/R)
, (5.5)

where

αn =
2

[J0(kn)]2

∫ 1

0

ξ 2J1(knξ ) dξ = − 2

knJ0(kn)
, (5.6)
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Figure 5. Theoretical velocity profiles (solid lines) computed using the expansion (5.5) and
evaluated at the radius Rp where the plumes were released. The parameters used for
Richards & Griffiths (1988) (RG88) were R = 30 cm, H = 10.5 cm, Rp = 12 cm. Those used
for Kerr & Mériaux (2004) (KM04) were R = 30 cm, H = 24 cm, Rp = 15 cm. The dashed lines
show approximations to the theoretical solutions: uniform shear for RG88, and the cubic
approximation (5.7) for KM04.

and kn are the positive roots of the Bessel function J1. Each term in the series (5.5)
satisfies the zero-velocity conditions on z = 0 and ρ = R. The coefficients αn are
determined by applying the boundary condition V (ρ, H ) = ωρ.

Calculations of the velocity profiles V (Rp, z) experienced by the plumes in the two
sets of experiments are shown in figure 5. The profile for the experiments of Richards
& Griffiths (1988) is a very good approximation to uniform shear, as they verified with
a dye streak. Hence repeating the numerical calculations with the exact profile would
not produce any significant changes to figure 3. However, owing to the larger values
of H/R and Rp/R, the experiments of Kerr & Mériaux (2004) had a profile that
deviated significantly from uniform shear (figure 5). In particular, the velocity near
the bottom of the tank is predicted to be less than half that under a uniform-shear
assumption.

The numerical computations for Kerr & Mériaux’s experiments were therefore
repeated with the shear velocity γ z (with γ = ωRp/H ) replaced, for simplicity, by a
cubic polynomial approximation

V ≈ γ z
[
1 − 0.6

(
1 − z

H

)
− 0.4

z

H

(
1 − z

H

)]
(5.7)

to (5.5) (see figure 5). Much better agreement was obtained, and the results can be
seen in figure 6.

5.4. Discussion of model comparison with experiments

Considering that the model has no adjustable parameters, the agreement with the
experiments, as shown in figures 3 and 6 is quite good in most, but not all, of the
runs. We now discuss some of the modelling assumptions and possible reasons for
the discrepancies. We note that, with the exception of experiment B1, all the errors
in the trajectory predictions are such that the model predicts a greater deflection
than is actually observed. There is, however, no systematic variation of the error with
deflection angle.
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Figure 6. A comparison of the model predictions with the experiments of Kerr & Mériaux

(2004). The dashed lines are the results (centreline and width at ±
√

2 a) from the model using
the non-uniform shear velocity (5.7). Note the significant improvement over figure 4.

One obvious weakness of the model is the requirement for slenderness, and the
corrections to slender-body theory that have been neglected. Since C2 ≈ −1.3, we
need a reasonably large aspect ratio �/a even to predict a positive value of u, let
alone reach the regime in which slender-body theory is a good approximation. Since
� = z(1 − z/H ) the maximum value of � is only 1

4
H , which exacerbates the difficulty.

Taking Richards & Griffiths’ experiment A3 as a typical example, the mid-height
aspect ratio is about 12, giving a value of only 2.5 for ln(�/a). There is evidence for
over-estimation of the deflection of the thicker plumes in figure 3, and some, but not
all, of the thicker plumes in figure 6.

The model also implicitly assumes that the plumes remain roughly cylindrical and
that non-axisymmetric effects are negligible. Whittaker & Lister (2008) show that for
an isolated thermal rising in Stokes flow, much of the buoyant material is stretched
out behind in a long tail, rather than remaining in a compact roughly spherical head.
If these results carry over to the two-dimensional cross-section of a sheared plume,
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then it is plausible (at least for diffusing plumes) that the shear flow in each horizontal
cross-section will strip some of the buoyant plume material into a horizontal wake on
the downstream side of the plume. However, it seems likely that this effect will serve
to increase, rather than decrease, the angle of inclination from that predicted by the
model.

The compositional plumes of Richards & Griffiths (1988) had negligible diffusion
and thus a constant mass flux. For simplicity, we assumed that the mass flux in the
thermal plumes of Kerr & Mériaux (2004) grew according to the diffusive law (3.16)
rather than the entrainment mechanism suggested by Griffiths & Campbell (1991). A
slow cross-stream circulation was observed in experiments 8 and 20, though it would
be surprising if this had led to significant entrainment. In any case, we note that the
effect of entrainment would be to increase the plume radius, decrease the rise velocity
through the logarithm in (3.20), and thus increase the predicted angle of inclination.
Again this is in the opposite direction from that required to make the model agree
more closely with experiments.

We also assumed that any viscosity variations are negligible. In fact, in all the
experiments considered, the plume material had a lower viscosity than that of the
ambient fluid owing either to compositional effects or to temperature-dependent
viscosity; viscosity ratios are given in tables 2 and 3. This does not appear to have
had a great effect on the results, since there is no obvious correlation between larger
viscosity contrasts and larger discrepancies. From a theoretical point of view, viscosity
contrasts affect the constants ci , which are quite small (an order of magnitude less
than the Ci), so a correspondingly large contrast would be required for this change
to be significant. A faster axial velocity w would result in a smaller buoyancy force
F per unit length for a given value of B . But it is not the axial velocity that directly
controls the angle of inclination. The angle θ is determined by the transverse velocity
u, which (for a given F ) will be influenced far less by the lower internal viscosity than
w.† Hence the smaller value of F will dominate the effect of a slightly larger value of
c2 in (3.20), thus causing u to be smaller. Hence a lower internal viscosity would be
expected to cause plumes to be deflected by more than the isoviscous model predicts,
which is contrary to the observed discrepancies.

Of the effects discussed above, it appears that departures from asymptotic
slenderness are the most likely explanation for the differences between the model
and the experiments, though this is far from proven.

6. Concluding remarks
We have developed a model for sheared plumes which has some advantages,

discussed below, over those proposed before. We have also identified the key
dimensionless parameters and regimes for such plumes, along with suitable non-
dimensionalizations. This may allow easier comparison between experiments and
theory in the future. The dimensionless model is summarized in § 3.4.

The model developed here uses slender-body theory for the plume, which is
mathematically more satisfactory than assuming a constant rise velocity. By taking
into account the horizontal boundaries, we have also shown how to determine

† Compare with the rise of a uniform buoyant cylinder (see Lister & Kerr 1989, for example).
The rise velocity is principally controlled by the outer viscosity, with the viscosity ratio only having
a small effect. There is only about a 50% difference between the rise speed of a infinitely viscous
rigid cylinder and that of an inviscid cylindrical bubble.
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the appropriate aspect ratio. The end result is that the model requires no fitting
parameters. It also makes it explicit that the velocity that determines the deflection
angle is the transverse induced flow u, rather than the axial induced flow w.

The model also has the advantage of relative simplicity. It is probably the best
that can be achieved with only local cross-sectionally averaged variables. Any
improvements would have to come from incorporating either additional information
from the internal buoyancy distribution within the plume, or additional non-local
information about the global trajectory and distribution of F . If the results here
are deemed unsatisfactory, then these complications would need to be incorporated,
perhaps even by a full numerical calculation of the three-dimensional Stokes flow and
heat transport.

The agreement with experiments (see figures 3 and 6) is by no means perfect,
though it is reasonable considering that there are no fitting parameters in the model.
The agreement is best for slender plumes, and the model appears to overpredict
the deflection of fat plumes. Further work needs to be done to assess the model’s
performance more fully and to examine more closely where discrepancies arise.

Finally, we note that the applicability of the model is not restricted to steady plumes
in uniform shear flows. As we have seen above, it is straightforward to adapt it for
use in an arbitrary flow by replacing the occurrences of G z in (3.19)–(3.23) with an
alternative flow field. The model could also be used to predict the temporal evolution
of a plume (for example, in response to a change in the external flow) by modifying
(3.7) to describe advection of the plume in the direction of its normal. In particular,
it would be possible replace the plume rise model of Richards & Griffiths (1988)
by the model described here in Steinberger & O’Connell’s (1998) calculations of the
evolution of mantle plumes in a mantle velocity field inferred from plate motions and
tomography.

Appendix A. Calculations for the outer velocity
In this Appendix, we provide outlines of the calculations behind the results quoted

in (3.10)–(3.12) for � and Ci . Contributions come from the buoyancy throughout the
whole of the plume, and include the effects of any boundaries above or below the fluid
domain. However, we wish to estimate these parameters using only local properties
of the plume.

The parameters � and Ci are defined by (3.8) and (3.9) in terms of the outer limit of
an inner flow, which must therefore also be the inner limit of an outer flow. As shown
in Whittaker & Lister (2006a), for plumes whose properties vary only slowly along
their length, the outer flow can be represented by a set of Stokeslets on the plume
axis. Moreover, it was shown there that the local velocity near the plume at any point
is dominated by that of a uniform plume with the corresponding local properties
applying throughout. We therefore consider flows driven by a line of Stokeslets of
uniform strength.

A.1. Straight inclined plume above a single rigid boundary

First, we consider the velocity induced by a uniform line of Stokeslets at a fixed angle
above a single rigid boundary. The length � and corrections Ci can be evaluated
exactly as functions of θ . We use the method of images described in § 4 of Whittaker
& Lister (2006a) (see also Pozrikidis 1992, § 3.3) to express the velocity as the integral

u(x) =

∫ ∞

0

F êz · K(x; s ′) ds ′. (A 1)
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Figure 7. The coordinates and points used in the calculation of Appendix A.1. We use a
Green’s function for the velocity induced at x by a Stokeslet at x′. The free-space Green’s
function is added to that of an appropriate image system at x∗, chosen to satisfy the no-slip
boundary condition at z = 0.

The Green’s function for the velocity at a point x due to the Stokeslet at x ′ and
image system x∗ is

êz · K =

(
êz

| y′| +
(êz · y′) y′

| y′|3

)
−

(
êz

| y∗| +
(êz · y∗) y∗

| y∗|3

)

+ 2s ′ cos θ

(
y∗

| y∗|3 − 3(êz · y∗)2 y∗

| y∗|5

)
− 2s ′2 cos2 θ

(
êz

| y∗|3 − 3(êz · y∗) y∗

| y∗|5

)
, (A 2)

where, using the notation of figure 7,

y′ ≡ x − x ′ = (s − s ′)ês + r êr , (A 3)

y∗ ≡ x − x∗ = (s − s ′)ês + 2s ′ cos θ êz + r êr . (A 4)

We were unable to evaluate the full integral (A 1) analytically. However, we are
only interested in the limiting behaviour of the velocity close to the plume. There is a
logarithmic singularity from the first two terms in (A 2) and the remaining terms only
contribute to the constant and higher-order terms. We also note that the velocity is
proportional to F and a function only of r/s and φ, so we can set s = F = 1 without
loss of generality.

We consider a second kernel

K̃ =

⎧⎪⎨
⎪⎩

(
I

| y′| +
y′ y′

| y′|3

)
: 0 < s ′ < 2

0 : otherwise,

(A 5)

which has a known integral and has the same singular behaviour as K near r = 0.
We are then able to evaluate ∫ ∞

0

êz ·(K − K̃) ds ′ (A 6)

analytically at r = 0. By adding the constant term and logarithmic behaviour due

to K̃ to this result, we obtain the logarithmic and O(1) behaviour of the full outer
velocity as r/s → 0. Comparing with (3.8) and (3.9), we see that this is precisely what
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is required to evaluate � and the Ci . Taking � = z for simplicity, the results for the Ci

are given in (3.11) and (3.12).
Since the velocities are dominated by contributions from the local buoyancy, and

in the absence of a better analytical result, we shall apply these results for a line of
Stokeslets to calculations for plumes with varying inclination θ(s) by evaluating them
with the local value of θ at each point.

A.2. Vertical plume between two free-slip boundaries

Secondly, we calculated the equivalent results for a vertical plume between two free-
slip boundaries at z = 0 and z = 1. (Both the rigid case and the case θ �= 0 appear to
be intractable.)

The vertical velocity induced at a point (s, z) in an unbounded domain by an
isolated Stokeslet of strength êz at (0, z′) is given by

J (s, z; z′) =
s2 + 2(z − z′)2

[s2 + (z − z′)2]3/2
. (A 7)

We now consider the total velocity w(s, z) as an integral over a line of such Stokeslets
for 0 < z′ < 1 together with the appropriate images for z′ < 0 and z′ > 1. For
free-slip boundaries the images are simply Stokeslets of the same strength reflected
in the boundaries. These reflections result in a Stokeslet density along the axis which
is of uniform magnitude but which reverses direction at unit intervals.

Defining

In(s, z) =

∫ ∞

n

{J (s, z; z′) − J (s, z; −z′)} dz′, (A 8)

the velocity is given by

w(s, z) = (I0 − I1) − (I1 − I2) + (I2 − I3) − (I3 − I4) + · · ·

= I0(s, z) + 2

∞∑
n=1

(−1)n In(s, z). (A 9)

The integrals In can be evaluated explicitly, but all we actually need is the limiting
behaviour as s/z → 0. We find that

I0(s, z) = −4 ln

(
s

z

)
+ 4 ln 2 − 2 + O

(
s

z

)
, (A 10)

In(s, z) = 2 ln

(
n + z

n − z

)
+ O

(
s

z

)
(n � 1). (A 11)

Evaluating the sum (A 9) with the help of formula 8.325(1) in Gradshteyn & Ryzhik
(2000), we find that

w(s, z) = −4 ln
( s

L

)
+ 4 ln 2 − 2 + O

(
s

z

)
(A 12)

where

L =
2�

(
1 − 1

2
z
)
�

(
1 − 1

2
(1 − z)

)
�

(
1
2
z
)
�

(
1
2
(1 − z)

) . (A 13)

Comparing w(s, z) with I0(s, z), which is in fact the corresponding result for a single
lower boundary, we identify L with the appropriate outer length �. To within an
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accuracy of 8%, (A 13) may be approximated by

� = z(1 − z). (A 14)

Since � only appears in the model in a logarithm, this is a sufficiently good
approximation. We shall assume that the simplified expression (A 14) is also
appropriate for sheared plumes between two rigid horizontal boundaries, with the
values of Ci obtained above.

Appendix B. Calculations for the inner velocity
In this Appendix, we outline the calculations of the constants ci for some specific

buoyancy distributions as discussed in § 3.2. For a slender plume, the length scale of
variation along the axis is large compared with the width a. For r/a � O(1), the
Stokes equations (2.1) and (2.2) can be simplified by neglecting axial derivatives. By
matching to the far-field behaviour (3.8) and (3.9), we can obtain an explicit solution
for the flow field inside the plume induced by a given buoyancy distribution. This is
then used to determine c1 and c2.

With the non-dimensionalization used in the model, the Stokes equations simplify
and decouple to

∇2
⊥ w = −2π b cos θ, (B 1)

∇2
⊥ u⊥ = ∇⊥p − 2π b sin θ êt , ∇⊥· u⊥ = 0, (B 2)

where the subscript ⊥ denotes components in the local (r , θ)-plane, and êt is the unit
vector in the r-direction when φ = π. The far-field boundary conditions are given by
(3.8) and (3.9) in terms of the Ci .

It is convenient to use a horizontal coordinate ξ = r/a, to rescale the buoyancy as

b(r) =
F

a2
b̃(ξ ), (B 3)

and to write the inner velocity in the form

w = F cos θ

{
ln

(
�

a

)
+ C1 + f1(ξ, φ)

}
, (B 4)

u =
F sin θ

2

{
ln

(
�

a

)
+ C2 +

(
cos2 φ − 1

2

)
+ f2(ξ, φ)

}
. (B 5)

The far-field boundary condition is then fi(ξ, φ) ∼ − ln ξ + o(1) as ξ → ∞.
We now calculate the velocities fi(ξ, φ) in terms of the scaled buoyancy b̃(ξ ), by

using a Green’s function. We write

fi(ξ, φ) = 2π

∫ ∞

0

Gi(ξ, φ; ξ ′) b̃(ξ ′) ξ ′ dξ ′. (B 6)

For the axial velocity

G1(ξ, φ; ξ ′) =

{
− ln ξ ′ : 0 < ξ < ξ ′

− ln ξ : ξ ′ < ξ < ∞,
(B 7)

which is easily obtained from (B 1). For the transverse velocity,

G2(ξ, φ; ξ ′) =

⎧⎨
⎩

− ln ξ ′ −
(
cos2 φ − 1

2

)
: 0 < ξ < ξ ′

− ln ξ −
(
cos2 φ − 1

2

) ξ ′2

ξ 2
: ξ ′ < ξ < ∞,

(B 8)

which can be derived from (B 2) using, for example, Papkovich–Neuber potentials.
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Figure 8. The velocity driven by the axisymmetric buoyancy distributions (B 10). The function
plotted is the axisymmetric component of fi from (B 4) and (B 5), which is the same for both
the axial and transverse velocities. The short horizontal segments by the left-hand axis indicate
the corresponding values of ci as given by (B 11).

Once the velocity is obtained, application of (3.3) and (3.4), and comparison with
(3.13) and (3.14), gives

ci =

∫ 2π

0

∫ ∞

0

b̃(ξ ) fi(ξ, φ) ξ dξ dφ. (B 9)

Results are computed for the three simple axisymmetric buoyancy distributions

b̃(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

π
exp(−ξ 2) : Gaussian

1

2π
H(

√
2 − ξ ) : top hat

9

10π

(
1 −

√
3/10 ξ

)
H(

√
10/3 − ξ ) : triangular,

(B 10)

where H(x) is the Heaviside step function, and the amplitude and width of the
distributions have been chosen to satisfy (3.1) and (3.2). The resultant velocities are
shown in figure 8, and the corresponding values of ci are

c1 = c2 =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2
(ln 2 − γ ) = −0.0581 : Gaussian

− 1
2

(
ln 2 − 1

2

)
= −0.0966 : top hat

− 1
2

(
ln 10

3
− 31

30

)
= −0.0853 : triangular.

(B 11)

The smallness of the corrections ci and their insensitivity to the buoyancy
distribution mean that, even at modest aspect ratios, the effects of the internal
buoyancy distribution can be neglected with little loss in accuracy. We anticipate
that non-axisymmetric perturbations to the buoyancy distribution will not have a
significant effect on these results.
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